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ABSTRACT

Power indices such as the Banzhaf index were originally de-
veloped within voting theory in an attempt to rigorously
characterise the influence that a voter is able to wield in a
particular voting game. In this paper, we show how such
power indices can be applied to understanding the relative
importance of agents when we attempt to devise a coordi-
nation mechanism using the paradigm of social laws, or nor-
mative systems. Understanding how pivotal an agent is with
respect to the success of a particular social law is of benefit
when designing such social laws: we might typically aim to
ensure that power is distributed evenly amongst the agents
in a system, to avoid bottlenecks or single points of failure.
After formally defining the framework and illustrating the
role of power indices in it, we investigate the complexity
of computing these indices, showing that the characteristic
complexity result is #P-completeness. We then investigate
cases where computing indices is computationally easy.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; I.2.4 [Knowledge representation formalisms
and methods]

General Terms

Theory

Keywords
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1. INTRODUCTION
Normative systems (a.k.a. social laws) have been widely
promoted as an approach to coordinating multi-agent sys-
tems [12, 13, 14, 1]. The idea is that a normative system is
a set of prohibitions on the behaviour of agents in a system;
after imposing these prohibitions, the designer of the nor-
mative system intends that some desirable overall objective
will hold.

One of the most important issues associated with norma-
tive systems is that of compliance: what happens if some
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agents do not comply with the prohibitions of the norma-
tive system? It seems inevitable that non-compliance will
occur in real systems, either deliberately (for example, if
some participant believes non-compliance is in its interests),
or accidentally (for example, as the result of a system crash).
It makes sense, therefore, for the designer of a normative sys-
tem to take into account the possibility of non-compliance
at design time. It might be possible to design a normative
system so that compliance is the rational choice for partic-
ipants [1]. However, this approach does not help with the
issue of accidental non-compliance (or deliberately irrational
behaviour) and it is therefore to the issue of non-compliance,
irrespective of its causes, that we address ourselves in the
present paper.

The key idea of the paper is to develop principled tech-
niques for measuring the influence or power that a partic-
ipant agent has with respect to the success or otherwise
of a particular normative system. The approach we adopt
makes use of voting power indices [8]. Power indices, such
as the Banzhaf score, Banzhaf measure, Banzhaf index, and
Shapley-Shubik index were originally developed within vot-
ing theory in an attempt to rigorously characterise the in-
fluence that a voter is able to wield in a particular voting
game. In our setting, power is interpreted as the ability of
an agent to affect whether or not a normative system has
the desired effect. An agent wields such power by choosing
to comply or not comply with the prohibitions of the norma-
tive system. We would typically aim to ensure that power
is distributed evenly amongst the agents in a system, so as
to avoid bottlenecks or single points of failure. However, we
believe the approach also has wider value as an analytical
tool, enabling a designer to understand where the key risks
or vulnerabilities in a normative system lie. For example,
we might use the power distribution to guide the allocation
of a maintenance budget, focusing the budget on those par-
ticipants with a high power index, and hence whose failure
to comply would likely be particularly damaging (cf. [3]).

After formally defining the framework of normative sys-
tems, we show how power indices can be interpreted within
it, and give a detailed example to illustrate their use. We
then investigate the computational complexity of computing
power indices, showing that the characteristic complexity re-
sult is #P-completeness. More precisely, we show that the
problem of computing the Banzhaf score is #P-complete,
while computing the Banzhaf measure, Banzhaf index, and
Shapley-Shubik index are #P-equivalent. We investigate a
number of related computational problems, and then investi-
gate cases where computing indices is computationally easy.
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2. NORMATIVE SYSTEMS
We use the framework of [14, 1], which uses Kripke struc-
tures to model systems, and the logic ctl to characterise
the desirable properties of normative systems.

Kripke Structures: We use Kripke structures as our ba-
sic semantic model for multi-agent systems [7]. A Kripke
structure is essentially a directed graph, with a vertex set S
corresponding to possible states of the system being mod-
elled, and a relation R ⊆ S × S capturing the possible tran-
sitions of the system; S0 ⊆ S denotes the initial states of
the system. Intuitively, transitions are caused by agents in
the system performing actions, although we do not include
such actions in our semantic model (see, e.g., [12, 14] for
models which include actions as first class citizens). An arc
(s, s ′) ∈ R corresponds to the execution of an atomic ac-
tion by one of the agents in the system. Note that we are
therefore here not modelling synchronous action. This as-
sumption is not essential, but it simplifies the presentation.
However, we find it convenient to include within our model
the agents that cause transitions. We therefore assume a
set A of agents, and we label each transition in R with the
agent that causes the transition via a function α : R → A.
Finally, we use a vocabulary Φ = {p, q , . . .} of Boolean vari-
ables to express the properties of individual states S : we use
a function V : S → 2Φ to label each state with the Boolean
variables true (or satisfied) in that state.

Formally, an agent-labelled Kripke structure (over Φ) is a
6-tuple K = 〈S ,S0,R,A, α,V 〉, where: S is a finite, non-
empty set of states; S0 ⊆ S (S0 �= ∅) is the set of initial
states; R ⊆ S × S is a total binary transition relation on
S ; A = {1, . . . , n} is a set of agents; α : R → A labels
each transition in R with an agent; and V : S → 2Φ labels
each state with the set of propositional variables true in
that state. We hereafter refer to an agent-labelled Kripke
structure simply as a Kripke structure.

A path over a transition relation R is an infinite sequence
of states π = s0, s1, . . . such that ∀u ∈ N: (su , su+1) ∈ R. If
u ∈ N, then we denote by π[u] the component indexed by
u in π (thus π[0] denotes the first element, π[1] the second,
and so on). A path π such that π[0] = s is an s-path. Let
ΠR(s) denote the set of s-paths over R; since it will usually
be clear from context, we often omit reference to R, and
simply write Π(s).

CTL: To express the objectives of normative systems, we
use Computation Tree Logic (ctl), a well-known and widely
used branching time temporal logic [7]. Given a set Φ =
{p, q , . . .} of atomic propositions, the syntax of ctl is de-
fined by the following grammar, where p ∈ Φ:

ϕ ::= � | p | ¬ϕ | ϕ ∨ ϕ | E �ϕ | E(ϕU ϕ) | A �ϕ | A(ϕU ϕ)

The semantics of ctl are given with respect to the satis-
faction relation “|=”, which holds between pointed structures
of the form K , s (where K is a Kripke structure and s is a
state in K ), and formulae of the language. The satisfaction
relation is defined as follows:

K , s |= �;

K , s |= p iff p ∈ V (s) (where p ∈ Φ);

K , s |= ¬ϕ iff not K , s |= ϕ;

K , s |= ϕ ∨ ψ iff K , s |= ϕ or K , s |= ψ;

K , s |= A �ϕ iff ∀π ∈ Π(s) : K , π[1] |= ϕ;

K , s |= E �ϕ iff ∃π ∈ Π(s) : K , π[1] |= ϕ;

K , s |= A(ϕU ψ) iff ∀π ∈ Π(s), ∃u ∈ N, s.t. K , π[u] |= ψ
and ∀v , (0 ≤ v < u) : K , π[v ] |= ϕ

K , s |= E(ϕU ψ) iff ∃π ∈ Π(s), ∃u ∈ N, s.t. K , π[u] |= ψ
and ∀v , (0 ≤ v < u) : K , π[v ] |= ϕ

The remaining classical logic connectives (“∧”,“→”,“↔”) are
defined as abbreviations in terms of ¬,∨ in the conventional
way. The remaining ctl temporal operators are defined as
follows:

A♦ϕ ≡ A(�U ϕ) E♦ϕ ≡ E(�U ϕ)

A ϕ ≡ ¬E♦¬ϕ E ϕ ≡ ¬A♦¬ϕ

The problem of checking whether K , s |= ϕ for given K , s, ϕ
(model checking) can be done in deterministic polynomial
time [7]. We write K |= ϕ if K , s0 |= ϕ for all s0 ∈ S0.

Later, we use two fragments of ctl: the universal lan-
guage Lu (with typical element u), and the existential frag-
ment Le (typical element ε):

u ::= � | ⊥ | p | ¬p | u ∨ u | u ∧ u | A �u | A u | A(u U u)
ε ::= � | ⊥ | p | ¬p | ε ∨ ε | ε ∧ ε | E �ε | E ε | E(εU ε)

The key point about these fragments is as follows. Let us
say, for two Kripke structures K1 = 〈S ,S0,R1,A, α,V 〉 and
K2 = 〈S ,S0,R2,A, α,V 〉 that K1 is a subsystem of K2 and
K2 is a supersystem of K1, (denoted K1 � K2), iff R1 ⊆ R2.
Then we have:

Theorem 1 ([14]). Suppose K1 � K2, and s ∈ S. Then:

∀ε ∈ Le : K1, s |= ε ⇒ K2, s |= ε; and
∀u ∈ Lu : K2, s |= u ⇒ K1, s |= u.

Normative Systems: For our purposes, a normative sys-
tem (or “norm”) is simply a set of constraints on the be-
haviour of agents in a system. Formally, a normative sys-
tem η (w.r.t. a Kripke structure K = 〈S ,S0,R,A, α,V 〉) is
simply a subset of R, such that R \ η is a total relation (i.e.,
every state has a successor: for every s ∈ S there is a t ∈ S
such that (s, t) ∈ R), with the intended interpretation that
the transitions in η are forbidden. The requirement that
R \ η is total is a reasonableness constraint: it prevents nor-
mative systems which lead to states with no successor. (This
assumption allows us to use ctl as the object language. It
is no limitation, in the sense that a system being ‘stuck’
can be modelled as ‘looping in the same state forever’). Let
N (R) = {η ⊆ R : R \ η is total} be the set of normative
systems over R. Let A(η) = {α(s, s ′) : (s, s ′) ∈ η} denote
the set of agents involved in η.

The effect of implementing a normative system on a Kripke
structure is to eliminate from it all transitions that are for-
bidden according to this normative system (see [14] and, for
an approach that incentivises agents to keep the norm, [1]).
If K is a Kripke structure, and η is a normative system
over K , then K † η denotes the Kripke structure obtained
from K by deleting transitions forbidden in η. Formally, if
K = 〈S ,S0,R,A, α,V 〉, and η ∈ N (R), then let K † η = K ′

be the Kripke structure K ′ = 〈S ′,S0′,R′,A′, α′,V ′〉 where:

• S = S ′, S0 = S0′, A = A′, and V = V ′;

• R′ = R \ η; and

• α′ is the restriction of α to R′.
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The most basic question we can ask in the context of nor-
mative systems is as follows. We are given a Kripke structure
K , representing the state transition graph of our system,
and we are given a ctl formula ϕ, representing the objec-
tive of a normative system designer (that is, the objective
characterises what a designer wishes to accomplish with a
normative system). The feasibility problem is then whether
or not there exists a normative system η such that imple-
menting η in K will achieve ϕ, i.e., whether K † η |= ϕ. In
general, given a Kripke structure K and ctl objective ϕ,
checking feasibility is np-complete [12, 14]. We say that η is
effective for ϕ in K if K † η |= ϕ. Let eff (K , ϕ) denote the
set of normative systems that are effective for ϕ in K :

eff (K , ϕ) = {η ∈ N (R) : K † η |= ϕ}.
A social system S = 〈K , ϕ, η〉 consists of a Kripke struc-

ture K , representing the dynamics of the system, a ctl for-
mula ϕ, representing the objective that a designer has, and
a normative system η, by which means the designer intends
to achieve the objective.

We make use of operators on normative systems which cor-
respond to groups of agents “defecting” from the normative
system. Formally, let K = 〈S ,S0,R,A, α,V 〉 be a Kripke
structure, let C ⊆ A be a set of agents over K , and let η be
a normative system over K . Then η � C denotes the norma-
tive system that is the same as η except that it only contains
the arcs of η that correspond to the actions of agents in C ,
i.e., η � C = {(s, s ′) ∈ η : α(s, s ′) ∈ C}.

3. COALITIONAL GAMES AND POWER
We need some definitions from the area of cooperative game
theory [11] and the theory of voting power [8]. A coop-
erative (or coalitional) game is a pair G = 〈A, ν〉, where
A = {1, . . . , n} is a set of players, or agents, and ν : 2A → R

is the characteristic function of the game, which assigns to
every set of agents a numeric value, intuitively correspond-
ing to the utility that this group of agents could obtain if
they chose to cooperate. Notice that this model does not
attempt to model how groups of agents might cooperate, or
where utility comes from; nor does it dictate how the utility
obtained by a group of agents should be distributed among
coalition members. A cooperative game is said to be sim-
ple if the range of ν is {0, 1}; in simple games we say that
C are winning if ν(C ) = 1, while if ν(C ) = 0, we say C
are losing. For simple games, a number of power indices at-
tempt to characterise in a systematic way the influence that
a given agent has, by measuring how effective this agent is at
turning a losing coalition into a winning coalition [8]. The
best-known of these is perhaps the Banhzaf index and its
relatives, the Banzhaf score and Banzhaf measure [4].

Agent i is said to be a swing player for C ⊆ A\{i} if C is
not winning but C ∪{i} is. We define a function swing(C , i)
(where i �∈ C ) so that this function returns 1 if i is a swing
player for C , and 0 otherwise, i.e.,

swing(C , i) =

j
1 if ν(C ) = 0 and ν(C ∪ {i}) = 1
0 otherwise.

Now, we define the Banzhaf score for agent i , denoted σi , to
be the number of coalitions for which i is a swing player [8,
p.39]:

σi =
X

C⊆A\{i}
swing(C , i). (1)

The Banzhaf measure, denoted μi , is the probability that i
would be a swing player for a coalition chosen at random
from 2A\{i} [8, p.39]:

μi =
σi

2n−1
(2)

The Banzhaf index for a player i ∈ A, denoted by βi , is the
proportion of coalitions for which i is a swing to the total
number of swings in the game – thus the Banzhaf index is
a measure of relative power, since it takes into account the
Banzhaf score of other agents [8, p.39]:

βi =
σiP

j∈A σj
(3)

Finally, we define the Shapley-Shubik index [8, p.39]; here
the order in which agents join a coalition plays a role. Let
P(A) denote the set of all permutations of A, with typi-
cal members 
, 
′, etc. If 
 ∈ P(A) and i ∈ A, then
let prec(i , 
) denote the members of A that precede i in
the ordering 
. (For example, if 
 = (a3, a1, a2), then
prec(a2, 
) = {a1, a3}.) Given this, let ςi denote the Shapley-
Shubik index of i , defined as follows [8, p.196]:

ςi =
1

|A|!
X

�∈P(A)

swing(prec(i , 
), i) (4)

Thus the Shapley-Shubik index is essentially the Shapley
value [11, p.291] applied to simple ({0, 1}-valued) coopera-
tive games. See also Example 1.

4. POWER IN SOCIAL SYSTEMS
We now make our link between, on the one hand, norma-
tive systems and the issue of compliance and, on the other
hand, cooperative games and power indices. The idea is as
follows. Suppose we are given a social system S = 〈K , ϕ, η〉,
i.e., a Kripke structure representing a system, a ctl for-
mula representing the objective that the designer wishes to
accomplish, and a normative system η, by which means the
designer wishes to accomplish ϕ. Now, it seems very natu-
ral that the designer of the normative system would want to
consider how important the various agents within the system
are with respect to the correct operation of the normative
system. Our aim is to use the power metrics discussed above
for this purpose.

To use power indices in normative systems, we must first
show how to associate a coalitional game with a social sys-
tem. The intuition is that a value of 1 is assigned to a
coalition C if C complying with the normative system will
achieve the objective, and 0 otherwise. Formally, a social
system S = 〈K , ϕ, η〉 (where K = 〈S ,S0,R,A, α,V 〉), in-
duces a simple cooperative game G(S) = 〈A, νS 〉, where the
set of players A is as in K , and νS is defined as follows:

νS (C ) =

j
1 if K † (η � C ) |= ϕ
0 otherwise.

We can then directly apply the indices discussed above to
understand the relative power that agents have in a social
system. Power, in this sense, will mean the relative ability
of an agent to cause a normative system to succeed or fail
with respect to the objective. The reason for wanting to
measure power in this way is not machiavellian: it at least
identifies agents that are crucial in achieving the objective,
and one might desire to ensure that power is distributed as
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Figure 1: Kripke model M , representing a resource-
passing scenario.

evenly as possible, in order to ensure that there are are no
bottlenecks, or single-points-of-failure.

Note that one could, of course, alternatively measure the
power an agent has to ensure the achievement of an objective
by defecting from a normative system, i.e., by not obeying
the norm. However, we will restrict our attention to power
exerted by compliance. This matches our intuitions about
compliance, where we think of the more agents complying,
the better. This property is captured in the idea of coalition
monotonicity, ensuring that a compliant coalition never have
to fear new members joining them:

∀C : K † (η � C ) |= ϕ implies ∀C ′ ⊇ C : K † (η � C ′) |= ϕ.

Some types of social system are inherently monotone in this
sense.

Proposition 1. If ϕ ∈ Lu then the social system 〈K , ϕ, η〉
is coalition monotone.

Note that we do not in general assume that social systems
are coalition monotone in this paper.

Let us consider an example of our power measures.

Example 1 (Passing on a resource). Figure 1 shows
a simple example of a Kripke structure. Here, we have
A = {1, 2, 3}, and the idea is that the agents can pass a
resource to each other. Each state is labelled with an atom,
indicating the unique atom that is true there. So, for in-
stance, p would indicate that agent 1 owns the resource. Let
us identify the state names with their associated atoms, and
stipulate that S0 = {p}: initially, agent 1 owns the resource.
He can pass it on to 2 (leading us to the state where q is true)
or to 3 (making r true). Agents 2 and 3 can also decide to
keep the resource for themselves. We consider a norm η de-
picted by the dotted arrows (recall that a norm represents the
“forbidden” transitions). This law is supposed to enforce that
every agent will eventually get the resource. Let us identify
a number of possible objectives associated with η:

1. ϕ1 = A♦r
On every path, 3 will eventually own the resource;

2. ϕ2 = E E♦r
On some path, it is always the case that on some con-
tinuation r will eventually hold.

3. ϕ3 =
V

x=p,q,r A (x → A♦¬x )
Nobody keeps the resource forever.

4. ϕ4 = A♦(p ∧ (A♦(q ∧ A♦r)))
On every path, 1 will eventually obtain the resource,
after which 2 will eventually obtain it, after which fi-
nally 3 will obtain it.

5. ϕ5 = A♦(p ∧ (A♦(q ∧ A♦(r ∧ A♦p))))
As ϕ4, but back to 1 again.

6. Consider the following fairness property f (1) for agent
1:

p → A �(¬p ∧ A �¬p)

In words: if agent 1 has the resource, he will not have
it in the next two rounds. Define f (3) similarly with re-
spect to r. Consider finally ϕ6 = (A f (1))∨(A f (3)):
computations are either fair with respect to 1 or to 3.

This gives us the following.

1. We have the following Banzhaf scores: σ1 = 0, σ2 = 4
and σ3 = 0. Note that for this objective, swing(C , 2) =
1 for every C with 2 �∈ C: first of all, agent 2 is needed
to fulfill ϕ1 (if 2 does not abide to η, he can keep the
resource forever) and also sufficient: if 2 does not hang
on to the resource or give it back to 1, agent 3 will
eventually get it. Hence, we have swing(C , i) = 0 for
i = 1, 3: since agent 2 is necessary and sufficient to
make ϕ1 true, agents 1 and 3 will never be in a swing
position. Since 2n−1 = 4 in this example, we have
μ1 = μ3 = 0 and μ2 = 1. The Banzhaf indices βi here
equal the Banzhaf measures μi . Finally, the Shapley-
Shubik indices are ς1 = ς3 = 0, and ς2 = 6

6
= 1.

2. This is an extreme case: note that ϕ2 is true both in
K and in K †η, in other words, it does not matter who
keeps to the norm and who does not. Consequently,
σi = μi = βi = ςi = 0 for all i ∈ A.

3. This objective will be true iff both 2 and 3 comply with
the norm. So, swing(C , 2) = 1 iff 3 ∈ C and 2 �∈ C,
which yields σ2 = 2. Similarly, σ3 = 2, and obviously
we have σ1 = 0. This straightforwardly gives μ1 = 0
and μ2 = μ3 = 1

2
, β1 = 0 and β2 = β3 = 1

2
. Also,

ς1 = 0 and ς2 = ς3 = 3
6

= 1
2
.

4. Compliance to the norm by 1 and 2 is necessary and
sufficient. Thus, the situation is similar to ϕ3, and
thus σ1 = σ2 = 2 and σ3 = 0; μ1 = μ2 = 1

2
and

μ3 = 0; and ς1 = ς2 = 1
2

and ς3 = 0.

5. Compliance to the norm by all agents is sufficient and
necessary for ϕ5. Hence, for every i, we have swing(A\
{i}, i) = 1, and hence σi = 1, μi = 1

4
, and βi = 1

3
. It

is also not hard to see that ςi = 2
6

= 1
3

for every i ∈ A.

6. This example illustrates that the Banzhaf index can be
different from the Shapley-Shubik index as measures of
power in normative systems. Observe that we need ei-
ther agents 1 and 2, or agents 1 and 3, to comply to
the norm if the objective ϕ6 is to hold. Hence, we have
that swing(C , 1) = 1 iff C ∈ {{2}, {3}, {2, 3}} and
swing(C , 2) = 1 iff C = {1} and, finally, swing(C , 3) =
1 iff C = {1}. This gives σ1 = 3, σ2 = 1 = σ3. For the
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Banzhaf measure this gives μ1 = 3
4

and μ2 = μ3 = 1
4
,

and the Banzhaf index is β1 = 3
5

and β2 = 1
5

= β3.

For the Shapley-Shubik index, we find ς1 = 4
6

and

ς2 = 1
6

= ς3. Note that β1 = 18
30

< 20
30

= ς1. (In
ς1, 1 “gets a point twice” when considering 2 and 3:
i.e. for 231 and 321, while in β1, he only collects “one
point” for joining {2, 3}.)

An obvious question is whether structural properties of so-
cial systems (restricted forms of Kripke structure or objec-
tive formula) yield any information about power measures.
First, we have the following.

Theorem 2. Let S = 〈K , ϕ, η〉 be a social system such
that ϕ ∈ Lu , K �|= ϕ, and η ∈ eff (K , ϕ). Then there is a
player with a positive Banzhaf score.

Next, let us consider how the Banzhaf score in particular
is related to the logical structure of an objective formula. We
let Sj = 〈K , ϕj , η〉 for j = 1, 2, 3 be social systems with K
and η identical for each Sj . We will write νj (C ) for νSj (C ),

and σj
i for σi in game G(Sj ) (similarly for swing j ). If K and

η are clear from the context, we will sometimes write C |= ϕ
for K †(η � C ) |= ϕ and C +i |= ϕ for K †(η � (C∪{i})) |= ϕ.

Theorem 3.

1. if ϕ1 ∈ {�,⊥}, then no player is a swing player for
any coalition, and hence σi = 0 for all i . The same is
true for ϕ1 being an objective formula, i.e., a Boolean
combination of atoms from Φ: nobody can change the
current state of affairs.

2. Suppose ϕ1 = ¬ϕ2. Note that, although we have ν1(C ) =
1 ⇒ ν2(C ) = 0, the other direction only holds if there
is one unique starting state s0 ∈ S0, if there is an ini-
tial state in K †(η � C ) where ϕ1 is true and one where
it is false, then we have ν1(C ) = ν2(C ) = 0.

3. ϕ3 = ϕ1∧ϕ2. We have swing1(C , i) = 1 = swing2(C , i) ⇒
swing3(C , i) = 1, but it is of course possible that σ3

i =
0 while σ1

i , σ2
i > 0, and also that σ3

i > 0 while σ1
i =

σ2
i = 0.

4. ϕ3 = ϕ1 ∨ ϕ2. Again, when swing1(C , i) = 1 =
swing2(C , i) then swing3(C , i) = 1, but the other way
around does not hold. In case that S0 is a single-
ton, then swing3(C , i) = 1 ⇒ swing2(C , i) = 1 or
swing1(C , i) = 1. Also for this singleton-case, let
z =| {C ⊆ A | C �|= ϕ1 ∨ ϕ2 & C + i |= ϕ1 ∧ ϕ2} |.
Then σ3

i = σ1
i + σ2

i − z .

5. ϕ3 = E �ϕ2. This is an interesting case: if σ3
i >

0, it means that there is a coalition C that cannot
enforce a path with a certain property, but when in
addition i refrains from doing certain actions, such
a path becomes available! If the reader doubts that
this is an actual possibility in our framework, we offer
ϕ2 = A(alive U old) as an example. It is easy to con-
struct a model and normative system where C �|= ϕ3

but C + i |= ϕ3
1. A tongue in cheek interpretation:

if i does not refrain from smoking, there is no path in

1Take, e.g., four states {s0, t , u, v}, transitions
(s0, t), (t , u), (t , v), let alive be true only in t and old
only true in v , let η = {t , u}, A(t , u) = i , and let C = ∅.

which he is guaranteed to get older than 65, while, if he
would give up his habit, there is a path where he would
certainly live to be old.

4.1 Complexity of Power Indices
Now that we have some idea of how the measures de-

scribed above may be applied in multi-agent systems, it is
both natural and important to consider computational is-
sues. Our first result is as follows:

Theorem 4. Given a social system S = 〈K , ϕ, η〉 and
agent i in K , computing the Banzhaf score σi for i in the
corresponding coalitional game G(S) is #P-complete.

Proof. For membership of #P, consider a non-deterministic
Turing machine that guesses a coalition C ⊆ A \ {i}, and
accepts iff both K †(η � C ) �|= ϕ and K †(η � (C ∪{i})) |= ϕ.
Hence the number of computations on which this machine
accepts will be the number of coalitions for which i is a
swing, i.e., the Banzhaf score σi .

We now prove that computing the Banzhaf score is #P-
hard, by a reduction from #sat [10, p.169], the problem of
counting the satisfying assignments of a given Boolean for-
mula Ψ. Let x1, . . . , xk be the Boolean variables of Ψ. The
reduction is as follows. For each Boolean variable xi we cre-
ate an agent ai , and in addition we create two further agents,
d and e. We also create Boolean variables corresponding to
the variables x1, . . . , xk of the input instance Ψ, and two ad-
ditional variables, y and z . We create 3k +5 states, and cre-
ate the transition relation R and associated agent labelling α
and valuation V as illustrated in Figure 2: inside states are
the propositions true in that state, while arcs between states
are labelled with the agent associated with the transition.
Let S0 = {s1} be the singleton initial state set. We have thus
defined the Kripke structure K . For the remaining compo-
nents, define η = {(s1, s3), (s4, s6), . . . , (s3k+1, s3k+3), (y , y)}.
Let Ψ∗ be the formula obtained from Ψ by systematically
replacing each Boolean variable xi by (E♦xi). We trans-
form the propositional input formula Ψ into a ctl formula
χ representing an objective as follows:

χ =̂ Ψ∗ ∧ A (y → A �A z ).

In words: ‘Ψ∗ holds and whenever y holds, the system con-
tinues to be always in z ’. Finally, set the agent whose
Banzhaf score is to be computed to e. Now, consider a
coalition C such that swing(C , e): we claim that C defines
a satisfying assignment for Ψ. First, since the first conjunct
in the definition of χ is satisfied, then C must correspond
to a satisfying assignment for Ψ (the second conjunct in the
definition of χ can only be achieved with the compliance of
e). Conversely, given a satisfying assignment for Ψ, let C
denote the corresponding coalition in the social system de-
fined by the reduction. Then e will be a swing player for
C ; to see this, the compliance of C will ensure that the first
conjunct in the definition of χ will be satisfied. However,
the compliance of e is required to ensure that the second
conjunct is satisfied. Thus, computing the Banzhaf score in
the setting given is #P-hard.

We will say a problem is #P-equivalent if it is #P-complete
with respect to Turing reductions. We have:

Theorem 5. Given a social system S = 〈K , ϕ, η〉 and
agent i in K , the following problems are #P-equivalent:
computing the Banzhaf index βi ; computing the Banzhaf
measure μi ; and computing the Shapley-Shubik index ςi .
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Figure 2: Illustrating the reduction for Theorem 4.

Proof. We show the proof for μi ; the cases for βi and
ςi are variations of essentially the same argument. For #P-
easiness, note that computing the Banzhaf score of i , (i.e.,
the numerator in equation (2)), is in #P. It follows that com-
puting μi in the setting given is #P-easy, since this value can
be computed in polynomial time by a deterministic Turing
machine with access to a #P oracle, i.e., one for comput-
ing σi . Now, if we had an efficient method for computing
the Banzhaf measure, we would have an efficient method for
computing the Banzhaf score (multiply μi by 2n−1); but by
Theorem 4 this problem is #P-hard. It follows that com-
puting μi is #P-hard.

We say that a player i is a dictator in a social system if
μi = 1, and a dummy if μi = 0. In other words, a player is a
dictator if its compliance with the normative system is both
necessary and sufficient for the normative system to achieve
the objective. If a player is a dummy, then its compliance, or
otherwise, has no effect on whether the objective is achieved:
the compliance of a dummy never makes any difference.

Theorem 6. Given a social system S = 〈K , ϕ, η〉 and
agent i in K , the following problems are co-np-complete:
checking whether σi = 0; checking whether μi = 0; checking
whether μi = 1; checking whether βi = 0; checking whether
βi = 1; checking whether ςi = 0; and checking whether ςi =
1.

Proof. We show the proof for checking that σi = 0; the
other cases are similar arguments and constructions. Con-
sider the complement problem, i.e., the problem of checking
whether σi > 0. Membership of np is obvious: guess a
coalition C ⊆ A \ {i} and verify that i is a swing player for
C . For hardness, we can reduce sat, using the construction
of Theorem 4: check whether e is a swing player for some
coalition.

Finally, it is interesting to consider the problem of relative
power: given two agents i , j ∈ A and a power index M ∈
{σ, μ, β, ς}, we write i �M j to mean Mi > Mj .

Theorem 7. Given a social system S = 〈K , ϕ, η〉, agents
i , j in K , and power measure M ∈ {σ, μ, β, ς}, it is np-hard
to decide whether i �M j .

Proof. Consider the case for M = σ. We can reduce
from the problem of checking whether σi > 0, i.e., the com-
plement of the problem we consider in Theorem 6, which

from Theorem 6 is np-complete. We simply add a new, “re-
dundant”, agent j so that σj = 0, giving i �σ j iff σi > 0.
To define j , we simply associate no edges in the transition
relation with j , so that j ’s compliance (or otherwise) to any
normative system never makes any difference to the success
or failure of any objective. The cases for M ∈ {μ, β, ς} are
similar.

4.2 Tractable Instances
Interpreted according to the standard conventions of com-
putational complexity, the results we presented above are
negative: they indicate that computing power indices for
normative systems in general is computationally complex.
It is therefore obvious to ask whether there are any natu-
ral cases where computing these power indices becomes easy
(polynomial time computable).

Minimality
The first case we consider concerns minimal normative sys-
tems (cf. [9]). We say that a social system S = 〈K , ϕ, η〉 is
minimal if K †η |= ϕ but there does not exist an η′ ⊂ η such
that K † η′ |= ϕ. In other words, in a minimal social system
it is essential that all forbidden transitions remain unused:
failing to observe any of the requirements in a minimal social
system will result in the failure of the normative system. If
S = 〈K , ϕ, η〉 is minimal we say that η is a minimal norm
for K , ϕ. Now, given this, we can prove the following:

Theorem 8. If S = 〈K , ϕ, η〉 is a minimal social system,
then for each i ∈ A(η), the values σi , μi , βi , and ςi are
polynomial time computable. In fact, letting m = |A\A(η)|,
we have:

σi = 2m

from which μi and βi may immediately be computed, and

ςi =
1

|A|!
|A\A(η)|−1X

i=0

„
m − 1

i

«
(|A(η)| + i)!(m − 1 − i)!

=
1

|A(η)| .
Proof. To see that σi = 2m , from the fact that η is min-

imal, then agent i ∈ A(η) is a swing player for coalition C iff
C ⊃ A(η)\{i} and i �∈ C . There are 2m such coalitions. The
case for ςi follows from a similar argument, considering the
number of possible permutations of A in which the agents
A(η)\{i} all precede i (the numerator of the first expression
for ςi), which after simplification yields ςi = 1

|A(η)| .



Thomas Ågotnes, Wiebe van der Hoek, Moshe Tennenholtz, Michael Wooldridge • Power in Normative Systems

151

Figure 3: An example bridge normative system, in
which the initial state is s0, the objective to ensure
that p is always true, and forbidden transitions are
indicated by heavy arrows.

Of course, this easy computation is only feasible if ones
knows that the social system is minimal, and in general, it is
computationally hard to check this. If we do not know that
the normative system in question is minimal, therefore, we
cannot necessarily apply this idea. However, in some very
natural cases, checking minimality can be straightforward.
We here consider bridge and tree normative systems.

Bridge Normative Systems
The term “bridge” here derives from the way the term is
used in graph theory [5, p.558]. The idea of a bridge nor-
mative system is as follows. Suppose we have an objective
A p, and within the Kripke structure K , we have a bridge
arc leading into a connected component (the “bad region”)
in which every state satisfies ¬p. Then this arc – the bridge
– is an obvious candidate for a normative system to ensure
A p: by forbidding this transition, we prevent the possi-
bility of entering the bad region. The idea is illustrated in
Figure 3.

Formally, if S = 〈K , A ϕ, η〉 is a social system (note the
restricted form of objective), then we will say η is a bridge
normative system if:

• for every arc (s, s ′) ∈ η, s is reachable from some mem-
ber of S0;

• for every arc (s, s ′) ∈ η, if we remove (s, s ′) from K
then the component of R rooted at s ′ will be dis-
connected from every member of S0 (i.e., (s, s ′) is a
bridge);

• for every arc (s, s ′) ∈ η, then for every state s ′′ reach-
able in R from s ′, we have K , s ′′ |= ¬ϕ;

• for every arc (s, s ′) ∈ η, we have K , s |= ϕ.

Now, we have the following:

Theorem 9. Given a social system S = 〈K , A ϕ, η〉
such that η ∈ eff (K , ϕ), then if η is a bridge normative
system, then η is minimal.

Theorem 10. Given a social system S = 〈K , A ϕ, η〉
such that η ∈ eff (K , ϕ), checking whether η is a bridge nor-
mative system can be done in polynomial time.

It follows that bridge normative systems represent a case
where we can easily compute power indices.

Trees
We assume familiarity with the notion of a tree T = 〈S , r ,R〉,
with root r and domain S . A Kripke structure
K = 〈S , {s0},R,A, α,V 〉 will be called a Kripke tree if
〈S , {s0},R′〉 is a tree, where R′ = R \ {(s, s) : s ∈ L} and
L = {s : (s, t) ∈ R ⇒ t = s}. L is the set of leaves (note
that R′ is the same as R only with the self-loops at the
leaves, a necessity due to the totality requirement, removed
in order to get a proper tree). The nodes S \ L which are
not leaf nodes are called decision nodes. We will focus on
one type of goal only: ϕ = A♦g where g (“good and ter-
minated”) is a propositional formula. A final restriction on
Kripke trees is that we assume that g is only true in (some
of the) leaves, and is true in at least one leaf. In this section

we are interested in social systems S = 〈K , A♦g , η〉 where
K is a Kripke tree. An example of a Kripke tree is shown
in Figure 4.

Theorem 11. If K is a Kripke tree, then there is a unique
minimal norm ηmin for K , A♦g. Given K, ηmin can be con-
structed in linear time.

Proof. We describe an algorithm for constructing ηmin

as follows. The algorithm goes through the tree in two
passes. The first pass is a depth-first traversal starting at
the root, marking each node with one of {+,−, =} in a post-
order sequence as follows: for each leaf  ∈ L, mark  with
+ iff  |= g and with − otherwise. For each decision node s,
mark s with + if all its children are marked with +, with −
if all its children are marked with −, and with = otherwise.
(The marking is illustrated in Figure 4).

The second pass is also a depth-first traversal starting at
the root, where for each node s ∈ S a set ηs is defined in a
post-order sequence as follows. η� = ∅ when  ∈ L. For each
s ∈ S \ L, let ηs be defined as follows from the markings
and sets ηt of its child nodes t . For each child node t of s
((s, t) ∈ R′), if t is marked with = let ηt ⊆ ηs ; if t is marked
with − then let (s, t) ∈ ηs .

Finally, let ηmin = ηs0 . It is easy to see that no leaf
node where g is not safisfied is reachable from the root in
K †ηmin , and thus that K †ηmin |= A♦g . Minimality follows
from construction. Uniqueness follows from the totality re-
quirement: if (s, t) ∈ ηmin then (by construction) none of
the leaves of the subtree rooted at t satisfy g , and if a nor-
mative system did not include (s, t) then it would have to
remove every outgoing transition from at least one node in
that subtree. Note that each depth-first traversal is done in
time proportional to |S | + |R|.

It follows that for Kripke trees and objectives of the form
A♦g , not only can minimality and therefore the power in-
dices be computed in polynomial time (Theorem 8), but it
is also the case that the (unique) minimal norm ensuring the
goal can be synthesised in polynomial time.

Example 2. Let K be the Kripke tree with A = {1, 2, 3, 4, 5}
illustrated in Figure 4. The minimal norm is

nmin = {(b, f ), (c, i), (h,m)}
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Figure 4: Example Kripke tree with states {a, . . . , q}.
Leaves are marked with the truth value of g. Deci-
sion nodes are marked with {+,−, =} according to
the algorithm in Theorem 11. The boxed decision
nodes illustrate “critical” nodes.

(illustrated with dotted lines in the figure) and A(ηmin) =
{2, 3}. In the notation of Theorem 8, m = 3. Thus, for
j ∈ {1, 4, 5}:

σ2 = σ3 = 8; σj = 0
μ2 = μ3 = 1

2
; μj = 0

β2 = β3 = 1
2
; βj = 0

ς2 = ς3 = 1
5
; ςj = 0

5. DISCUSSION AND CONCLUSIONS
Our work builds on several very different areas: the use of
ctl-like logics for reasoning about distributed and multi-
agent systems [7], social laws for coordinating multi-agent
systems [12, 13, 14, 1], cooperative game theory and power
indices/voting theory [11, 8], and computational complex-
ity [10]. To the best of our knowledge, the present paper
is the first synthesis of these different domains; the closest
work we know of is the seminal work of [3], who use power in-
dices to analyse network flow games, with the goal of finding
particularly important nodes or bottlenecks in the network.
However, the work also seems related to research on the the-
ory of influence [2]. The complexity of cooperative solution
concepts such as the Shapley value was originally studied,
for a number of coalitional game representations, in [6], al-
though it has been known since at least 1979 that computing
the Shapley-Shubik index for weighted voting games is #P-
complete [10, p.280].

Several issues suggest themselves for future work. Most
obviously, it will be important to try to identify further
tractable instances of the problems considered, focusing, for
example on restricted classes of Kripke structures and ctl
objectives. In addition, it would seem worth investigating
the complexity of the problems considered in this paper for
more succinct representations of Kripke structures, such as
those used by model checking systems: we might expect the
typical complexity of computing power indices to be at least
pspace-hard for such representations. And finally, of course,
more experience with the use of these measures in practical

settings would be valuable.
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